UDC 551.466.81

The spatial problem of steady waves being generated during the flow around a dipole in a uniform inviscid, incompressible, stratified fluid flow of finite depth is considered in a linear formulation. Approximate semi-asymptotic solutions of analogous problems by numerical methods are known [1, 2] for given fluid density distributions over the depth. An exact solution in the form of the sum of single integrals for waves from a source is obtained in [3]. Recently a uniform asymptotic has been determined for the leading front domain of a separate mode for the stream velocity c greater than the propagation velocity of the n-th mode long waves $c_{n}[4,5]$. This asymptotic is expressed for a fluid of finite depth in terms of Airy functions [4] and for an infinitely deep fluid by Fresnel integrals [5]. The method of constructing the complete asymptotic expansions of the solution [3] is described in [6] for $c<c_{n}$.

The asymptotic of the exact solution (in a linear formulation) of the problem under consideration is calculated in this paper for the critical stream velocity $c=c_{n}$, including the uniform asymptotic for the leading front domain.

Let the horizontal flow of an inviscid, incompressible fluid of depth H flow around a submerged point dipole oriented against the flow. The fluid density in the unperturbed state $\rho_{0}(z)$ depends on one vertical coordinate z and does not decrease with depth. In a linear formulation, the field of vertical fluid particle displacements $\zeta(x, y, z)$ generated by the dipole is described by the equation

$$
\begin{equation*}
D^{2} \frac{\partial}{\partial z}\left(\rho_{0} \frac{\partial}{\partial z} \zeta\right)+\rho_{0}\left(N^{2}+D^{2}\right) \Delta_{2} \zeta=M c^{-1} D^{2}\left\{\delta(x) \delta(y) \frac{d}{d z}\left[\rho_{0} \delta\left(z+H_{1}\right)\right]\right\} \tag{1}
\end{equation*}
$$

with the boundary conditions

$$
\begin{equation*}
\left(D^{2} \frac{\partial}{\partial z}-g \Delta_{2}\right) \zeta=0 \quad(z=0), \zeta=0 \quad(z=-H) \tag{2}
\end{equation*}
$$

where $D=c \partial / \partial x: \Delta_{2}=\partial^{2} / \partial x^{2}+\partial^{2} / \partial \dot{y}^{2} ; x, y$ are horizontal coordinates; the fluid flows at the velocity c in the positive x direction; the dipole is at a point with the coordinates $\left(0,0,-H_{1}\right) ; N^{2}=-g \rho_{0}^{-1} d \rho_{0} / d z$ is the square of the Brunt-Väisälä frequency, M is the magnitude of the dipole moment, g is the free fall acceleration, and $\delta(\cdot)$ is the delta function. For an infinite homogeneous fluid [7] the dipole yields the pattern for the flow around a sphere of radius $\sqrt{3} / \mathrm{M} / 2 \pi \mathrm{c}$.

An exact solution of an analogous problem is obtained in [1] for waves from a point source. It can be shown that the corresponding solution of (1) and (2) has the form

$$
\begin{gather*}
\zeta=M\left(2 \pi^{2} c\right)^{-1} \rho_{0}\left(-H_{1}\right) \sum_{n=0}^{\infty} \zeta_{n}(x, y, z) \tag{3}\\
\zeta_{n}=\operatorname{Re} \int_{-\pi / 2}^{\pi / 2} \Psi_{n}\left(\theta ; z,-H_{1}\right) G\left[-R \beta_{n}^{1 / 2} \cos (\theta-\gamma)\right] d \theta
\end{gather*}
$$

Here R, γ are polar coordinates of the horizontal (x, y) plane, $x=R \cos \gamma ; y=R \sin \gamma$; $\Psi_{n}=W_{n}(z ; \theta) \frac{d}{d z} W_{n}\left(-H_{1} ; \theta\right) ; \beta_{n}^{1 / 2} \quad$ is the arithmetic branch of the root; β_{n} and W_{n} are eigenvalues $\left(\beta_{0}>\beta_{1}>\ldots\right)$ and normalized eigenfunctions $\left(\int_{-H}^{0} \rho_{0} W_{n}^{2} d z=1\right)$ of the Sturm-Liouville problem $\quad \frac{d}{d z}\left(\rho_{0} \frac{d}{d z} W\right)+\rho_{0}\left(N^{2} \lambda-\beta\right) W=0 \quad(-H<z<0), \frac{d}{d z} W-g \lambda W=0 \quad(z=0), \quad W=0 \quad(z=-H)$,

Sevastopol'. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 73-78, January-February, 1988. Original article submitted November 4, 1986.
$\lambda=(c \cos \theta)^{-2}$. The $G(u)$ in (3) is the analytic continuation of the function $\varphi(u)=$ $\int_{0}^{\infty} t\left(t^{2}+1\right)^{-1} \mathrm{e}^{-u t} d t(\operatorname{Re} u>0) \quad$ in the complex plane of the variable u with the slit $(-\infty, 0]$. Let us describe the properties of the function $G(u)$ briefly. Deduced from the definition is

$$
\begin{gather*}
G(-u)=G(u)+i s \pi e^{i s u}, s=\operatorname{sign}(\arg u) \tag{4}\\
G(u) \sim-\sum_{m=1}^{\infty}(-1)^{m}(2 m-1)!u^{-2 m} \text { прпI }|u| \rightarrow \infty,|\arg u|<\pi \tag{5}
\end{gather*}
$$

Let us use the notation $F(u)=\frac{d}{d u}[G(u)+\ln u]$, where the principal branch of the logarithm is taken. The real parts of $F(u)$ and the sum $[G(u)+\ln u]$ vary continuously during passage through the slit and along the real u axis, $\operatorname{Re} F(0)=\pi / 2, \operatorname{Re}[G(u)+\ln u]_{u=0}=-C_{0}$, and C_{0} is the Euler constant. The functions $G(u)$ and $F(u)$ are also connected by the relationship $\frac{d}{d u} F(u)=-G(u)$.

The properties of the dispersion dependences $\beta_{n}(\lambda)$ are described in detail in [3]. It is essential for the purposes of this paper that $\beta_{n}(\lambda)$ grow monotonically for $\lambda \geq 0$, tend to infinity for $\lambda \rightarrow \infty$, where

$$
\begin{equation*}
\frac{d \beta_{n}}{d \lambda}=\left.g g_{0} W_{n}^{2}\right|_{z=0}+\int_{-H}^{0} \rho_{0} N^{2} W_{n}^{2} d z, \tag{6}
\end{equation*}
$$

and have one simple zero $\lambda=\lambda_{n}$. The critical velocity c_{n} for the n-th mode waves is related to λ_{n} by the simple relationship $c_{n}=\lambda_{n}{ }^{-1 / 2}$. In the critical case $c=c_{n}$ under consideration in this paper, the function $r_{n 1}(\theta)=\beta_{n}{ }^{1 / 2}\left(c^{-2} \cos ^{-2} \theta\right)$ from (3) is even, positive for $\theta \neq 0$, and $r_{n 1}(0)=0, \frac{d}{d \theta} r_{n_{1}}(\pm 0)= \pm x_{n}\left(x_{n}=c_{n}^{-1} \sqrt{\beta_{n k}^{\prime}\left(\lambda_{n}\right)}\right)$.

Let us analyze the contribution of the n-th mode to the far domain of the wave field (as $R \rightarrow \infty, \gamma_{1} \leq \gamma \leq \pi, \gamma_{1}$ is a small positive number). First we make some remarks about the technical aspect of calculating the asymptotic expansion of the integral (3). Note that for $c=c_{n}$ the argument. of the function $G(\cdot)$ in (3) takes on only real values. It follows from (4) and (5) that

$$
\begin{equation*}
\operatorname{Re} G(u) \sim \delta \pi \sin u-\sum_{m=1}^{\infty}(-1)^{m}(2 m-1)!u^{-2 m} \tag{7}
\end{equation*}
$$

where $\delta=0$ for $u>0$ and $\delta=1$ for $u<0$ when $\operatorname{Im} u=0$ and $|u| \rightarrow \infty$. Extracting the neighborhood of the zeroes of the expression $\Delta_{n_{1}}(\theta)=r_{n_{1}}(\theta) \cos (\theta-\gamma)$, in conformity with (7) we obtain a Fourier integral and power series for (3) for the remaining part of the interval of integration. The asymptotic of the Fourier integral is calculated by the stationary phase method [8]. The contributions of the zeros $\Delta_{\mathrm{n} 1}$ are found by integration by parts [6].

The functions $\Delta_{n 1}(\theta)$ have for $0<\gamma<\pi, \gamma \neq \pi / 2$ two simple roots $\theta_{0}=0$ and $\theta_{1}=\gamma-$ $\pi / 2$, since

$$
\begin{equation*}
\frac{\partial}{\partial \theta} \Delta_{n 1}\left(\theta_{1}\right)=r_{n 1}\left(\theta_{1}\right) \text { and } \frac{\partial}{\partial \theta} \Delta_{n 1}(\pm 0)= \pm x_{n} \cos \gamma . \tag{8}
\end{equation*}
$$

If $\gamma=0$ or $\gamma=\pi$, then $\Delta_{n 1}$ has just one zero θ_{0} (it is known that $r_{n 1} \cos \theta \rightarrow c^{-1} \max N(z)$ as $\theta \rightarrow \pi / 2, \mathrm{n} \geq 1$ and $\mathrm{r}_{01} \cos \theta \rightarrow \infty$, while if $\gamma=\pi / 2$, then $\Delta_{\mathrm{n} 1}$ has one multiple zero. Let. us first examine the case when $\Delta_{\mathrm{n} 1}$ has two zeros $\theta_{0} \neq \theta_{1}$. We select nonintersecting neighborhoods V_{0} and V_{1} of the points θ_{0} and θ_{1}, respectively, and we arrange a partition of unity [8]

$$
\begin{equation*}
\eta_{0}(\theta)+\eta_{1}(\theta)+\eta_{2}(\theta)=1 . \tag{9}
\end{equation*}
$$

Here the functions $\eta_{k}(\theta)(k=0,1)$ equal zero outside of V_{k}, are infinitely differentiable, $\eta_{k}\left(\theta_{k}\right)=1$ and $d^{m_{n}}\left(\theta_{k}\right) / d \theta^{m}=0$ for $m \geq 1$, and the function $\eta_{2}(\theta)$ is defined by the identity (9). Now the expression (3) can be written in the form of the sum

$$
\begin{equation*}
\zeta_{n}=\sum_{k=0}^{2} \zeta_{n k}, \zeta_{n k}=\operatorname{Re} \int_{-\pi / 2}^{\pi / 2} \Psi_{n k} G\left(-R \Delta_{n 1}\right) d \theta, \quad \Psi_{n k}=\Psi_{n} \eta_{k} . \tag{10}
\end{equation*}
$$

Let us calculate the asymptotic as $R \rightarrow+\infty$ for each of the components of (10). Let us regularize the argument of the function $G(\cdot)$ by using the notation $r_{n}(\theta)=\operatorname{sign}(\theta) r_{n_{1}}(\theta)$ and $L_{\mathrm{n}}=\mathrm{r}_{\mathrm{n}} \cos (\theta-\gamma)$. Using (4) we obtain

Within an accuracy of $O\left(R^{-\infty}\right)$, the first component in (11) equals the contribution of the boundary point $\theta=0$ [8]; the asymptotic of the second component and of $\zeta_{n 1}$ is found by integration by parts [6]. Consequently

$$
\begin{gather*}
\zeta_{n 0}=B_{n}(R, \gamma)+Z_{n 0}(R, \gamma), \zeta_{n 1}=Z_{n 1}(R, \gamma), \tag{12}\\
B_{n}(R, \gamma) \sim-\pi \sum_{m=0}^{\infty}(-1)^{m} R^{-(2 m+1)} M^{2 m}\left[\frac{\Psi_{n}}{\Delta_{n \theta}^{\prime}}\right], \\
Z_{n k}(R, \gamma) \sim \sum_{m=0}^{\infty}(-1)^{m} R^{-2 m} \int_{V_{k}}^{\infty} \ln \left|\Delta_{n}\right| \frac{d}{d \theta} M^{2 m-1}\left[\frac{\Psi_{n k}}{\Delta_{n \theta}^{\prime}}\right] d \theta, M=\frac{1}{\Delta_{n \theta}^{\prime}} \frac{d}{d \theta} .
\end{gather*}
$$

The principal term of the asymptotic is $\zeta_{n 0}=-\frac{\pi}{x x_{n}} \Psi_{n}\left(0 ; z,-H_{1}\right)+O\left(R^{-2}\right)$. The support of the function $\eta_{2}(\theta)$ in the remaining integral $\zeta_{\mathrm{n} 2}$ is a combination of three intervals in which $\left|\Delta_{\mathrm{n} 1}\right|$ is bounded uniformly from below. Using (4) and taking account of the signs of $\Delta_{\mathrm{n} 1}$ in these intervals, we find

$$
\begin{gather*}
\zeta_{n_{2}}=\pi \operatorname{Im} \int_{\theta_{3}}^{0} \Psi_{n_{2}} \mathrm{e}^{i R \Delta_{n}} d \theta+\pi \operatorname{Im} \int_{\theta_{4}}^{\pi / 2} \Psi_{n_{2}} \mathrm{e}^{i R \Delta_{n}} d \theta+\operatorname{Re} \int_{-\pi / 2}^{\pi / 2} \Psi_{n_{2}} G\left(R\left|\Delta_{n}\right|\right) d \theta, \tag{13}\\
\theta_{3}=\min \left(\theta_{0}, \theta_{1}\right) \text { и } \theta_{4}=\max \left(\theta_{0}, \theta_{1}\right) .
\end{gather*}
$$

The first integral in (13) differs from zero only for $\gamma<\pi / 2$ and has at least one stationary point since $\Delta_{\mathrm{n} \theta}^{\prime}\left(\theta_{1}\right)<0$ and $\Delta_{\mathrm{n} \theta}^{\prime}(0)>0$. The formulas for the complete asymptotic expansion of the contributions of the simple, multiple, and almost stationary points are given in [8]. There are no other critical points for this component of (13). In every specific case in which the stationary points can be found, let us denote their total contribution by $\mathrm{S}_{\mathrm{n}}(\mathrm{R}, \gamma)$. The second component in (13) in the domain $0<\gamma \leq \pi$ under consideration has no critical points [1], consequently its contribution to the wave field is $0\left(R^{-\infty}\right)$. The asymptotic of the last component in (13) is derived from (5) and the theorem on integration of asymptotic series [8]. Consequently, as $R \rightarrow+\infty$

$$
\begin{gather*}
\zeta_{n 2}=S_{n}(R, \gamma)+D_{n}(R, \gamma), \tag{14}\\
D_{n}(R, \gamma) \sim-\sum_{m=1}^{\infty}(-1)^{m} R^{-2 m}(2 m-1)!\int_{-\pi / 2}^{\pi / 2} \Psi_{n_{2}} \Delta_{n}^{-2 m} d \theta .
\end{gather*}
$$

Thus, if $\gamma \neq \pi / 2$ in the far wave field domain ζ_{n} to $O\left(R^{-\infty}\right)$ accuracy equals the sum of the contribution of the boundary point, the zeros Δ_{n} (12), the stationary points, and the series $D_{n}(R, \gamma)$ (14). The sum of the series in even powers of R from (12) and (14) can be written in the form

$$
Z_{n 0}(R, \gamma)+Z_{n 1}(R, \gamma)+D_{n}(R, \gamma) \sim-\sum_{m=1}^{\infty}(-1)^{m} R^{-2 m}(2 m-1)!\int_{-\pi / 2}^{\pi / 2} \Psi_{n} \Delta_{n}^{-2 m} d \theta,
$$

where $\Delta_{\mathrm{n}}^{-2 \mathrm{~m}}$ should be considered as generalized functions [9].
As $\gamma \rightarrow \pi / 2$, merger of the zeros θ_{0} and θ_{1} of the argument of the function G in (3) occurs; consequently, the asymptotic expansions obtained are not uniform in $\gamma, 0<\gamma_{1} \leq \gamma \leq \pi$. Let us calculate the asymptotic ζ_{n} in the neighborhood of the leading front, the plane $\mathrm{x}=0(\gamma=$ $\pi / 2)$. Let ω be a small positive number, $\left|\theta_{1}\right|<\omega, V_{0}=(-2 \omega, 2 \omega)$ the neighborhood of the point $\theta=0, \eta_{0}(\theta)$ an infinitely differentiable function equal to one for $|\theta| \leq \omega$ and zero outside V_{0}, while $\eta_{2}(\theta)=1-\eta_{0}(\theta)$. In these notations ζ_{n} equals the sum

$$
\begin{equation*}
\zeta_{n}=\zeta_{n 0}+\zeta_{n 2} . \tag{15}
\end{equation*}
$$

Here (11) is valid for $\zeta_{\text {no }}$, while (13) without the first component is valid for $\zeta_{n 2}$, and therefore to $O\left(R^{-\infty}\right)$ accuracy

$$
\begin{equation*}
\zeta_{n 2}=D_{n}(R, \gamma) \tag{16}
\end{equation*}
$$

The function Δ_{n} satisfies the conditions (6.1.20) [8] $\Delta_{n \theta}^{\prime}(0)=0, \Delta_{n \theta \theta}^{\prime \prime}(0)=2 x_{n}, \Delta_{n}^{\prime \prime} \theta \gamma(0)=$ $-x_{n}$ for $\gamma=\pi / 2$, consequently [8] the equation $\Delta_{n}^{\prime} \theta=0$ has just one solution $\theta_{2}(\gamma)$ for γ sufficiently close to $\pi / 2$ and replacement of the variable $\theta=u(\xi, \gamma)$, is possible for which

$$
\begin{equation*}
\xi^{2}=\Delta_{n}(\theta)-\Delta_{n 2}, \Delta_{n 2}=\Delta_{n}\left(\theta_{2}\right), \frac{\partial}{\partial \xi} u(0, \gamma)=\sqrt{\frac{2}{\Delta_{n \theta \theta}^{\prime \prime}\left(\theta_{2}\right)}} \tag{17}
\end{equation*}
$$

and $u(\xi, \gamma)$ is holomorphic in the neighborhood of the point ($0, \pi / 2$). The replacement (17) permits conversion of (11) to the form

$$
\begin{align*}
\zeta_{n 0} & =\eta_{n 1}+\eta_{n 2} \tag{18}\\
\eta_{n 1} & =\pi \operatorname{lm}\left\{\mathrm{e}^{i R \Delta_{n 2}} \int_{-\infty}^{B} \varphi_{n} \mathrm{e}^{i R \xi^{2}} d \xi\right\}, \quad \eta_{n 2}=\operatorname{Re} \int_{-\infty}^{\infty} \varphi_{n} G\left[-R\left(\xi^{2}+\Delta_{n 2}\right)\right] d \xi,
\end{align*}
$$

where $B=\operatorname{sign}\left(\frac{\pi}{2}-\gamma\right) \sqrt{-\Delta_{n_{2}}} ; \varphi_{n}(\xi)=\Psi_{n} \eta_{0} u_{\S}^{\prime}$, and φ_{n} is continued to zero outside the domain of definition of $u(\xi, \gamma)$ in ξ. The complete asymptotic expansions of the integrals (18) as $R \rightarrow$ ∞ are calculated by integration by parts by using a simple technical recipe. Let us demonstrate it in the expansion of the first of the integrals in (18):

$$
\begin{gathered}
\int_{-\infty}^{B} \varphi_{n}(\xi) \mathrm{e}^{i R \xi^{2}} d \xi=\varphi_{n}(0) \int_{-\infty}^{B} \mathrm{e}^{i R \xi^{2} d \xi}+\int_{-\infty}^{B} \frac{\left[\varphi_{n}(\xi)-\varphi_{n}(0)\right]}{2 i R \xi} d \mathrm{e}^{i R \xi^{2}}= \\
=\varphi_{n}(0) \int_{-\infty}^{B} \mathrm{e}^{i R \xi^{2}} d \xi+\frac{\varphi_{n}(B)-\varphi_{n}(0)}{2 i R B} \mathrm{e}^{i R B^{2}}-\frac{i}{2 i R} \int_{-\infty}^{B} P\left(\varphi_{n}\right) \mathrm{e}^{i R \xi^{2} d \xi, P\left(\varphi_{n}\right)=\frac{d}{d \xi}\left[\frac{\varphi_{n}(\xi)-\varphi_{n}(0)}{\xi}\right]} .
\end{gathered}
$$

Continuation of this procedure yields the asymptotic expansion for the first component in (18)

$$
\begin{equation*}
\eta_{n_{l}} \sim \pi \operatorname{Im} \sum_{m=0}^{\infty}(-2 i R)^{-m}\left\{p^{m}\left(\varphi_{n}\right)\left|e_{0}^{i R \Delta_{n 2}} \int_{-\infty}^{B} e^{i R \xi^{2}} d \xi+\frac{p^{m}\left(\varphi_{n}\right)}{2 i R B}\right|_{0}^{B}\right\} \tag{19}
\end{equation*}
$$

The integral in (19) is expressed in terms of a special function, the Fresnel integral

$$
\int_{-\infty}^{B} \mathrm{e}^{i R \xi^{2}} d \xi=\frac{1}{2} \sqrt{\frac{\pi}{R}} \Phi\left(B R^{1 / 2}\right), \Phi(u)=\frac{2}{\sqrt{\pi}} \int_{-\infty}^{u} \mathrm{e}^{i t^{2}} d t
$$

As a result of the same integration by parts for $\eta_{n 2}$ we obtain the series

$$
\begin{gather*}
\eta_{n 2} \sim \sum_{m=0}^{\infty}(-1)^{m}(2 R)^{-2 m}\left\{\left.P^{2 m}\left(\varphi_{n}\right)\right|_{0} J_{1}-\frac{1}{2 R} P^{2 m+1}\left(\varphi_{n}\right) l_{0} J_{2}-\frac{1}{4 R^{2}} \int_{-\infty}^{\infty} P^{2 m+2}\left(\varphi_{n}\right) \ln \left|s_{n}(\xi)\right| d \xi\right\} \tag{20}\\
J_{1}=\operatorname{Re} \int_{-\infty}^{\infty} G\left[-R s_{n}(\xi)\right] d \xi, \quad J_{2}=\operatorname{Re} \int_{-\infty}^{\infty} F\left[-R s_{n}(\xi)\right] d \xi, \quad s_{n}(\xi)=\xi^{2}+\Delta_{n 2} \tag{21}
\end{gather*}
$$

The integrands in (21) are holomorphic in the domain $0<\arg \xi<\pi$, and since it follows from (5) that $\mid G\left(-R s_{n} \mid=O\left(|\xi|^{-4}\right)\right.$ and $\left|F\left(-R s_{n}\right)\right|=O\left(|\xi|^{-2}\right)$ as $|\xi| \rightarrow \infty$, the integrals in (21) equal zero. Taking this into account, we rewrite(20):

$$
\begin{equation*}
\eta_{n_{2}} \sim \sum_{m=1}^{\infty}(-1)^{m}(2 R)^{-2 m} \int_{-\infty}^{\infty} p^{2 m}\left(\varphi_{n}\right) \ln \left|s_{n}(\xi)\right| d \xi \tag{22}
\end{equation*}
$$

Formulas (15), (16), (18), (19), and (22) yield the total asymptotic expansion for ζ_{n} in the neighborhood of the leading front. The principal term of the asymptotic ζ_{n} as $\gamma \rightarrow \pi / 2$ has
the form the form

$$
\begin{align*}
& \zeta_{n}=\pi \operatorname{Im}\left\{\Psi_{n} \sqrt{\frac{\pi}{2 R \Delta_{n \theta \theta}^{\prime \prime}}} \mathrm{e}^{\left.\left.i R \Delta_{n} \Phi\left(B R^{1 / 2}\right)\right|_{\theta=\theta_{2}}\right\}+\left.\frac{\Psi_{n}}{R B \sqrt{2 \Delta_{n \theta \theta}^{\prime \prime}}}\right|_{\theta=\theta_{2}}-}\right. \tag{23}\\
&-\left.\frac{\Psi_{n}}{x_{n} x}\right|_{\theta=0}+O\left(R^{-3 / 2}\left|\Phi\left(B R^{1 / 2}\right)\right|\right)
\end{align*}
$$

Fig. 1
The representation of the closeness of the principal term of its asymptotic (23) to ζ_{n} is given in the figure. Computations were performed for a fluid with a constant BruntVäisälä frequency; the Boussinesq approximation and "solid cover" condition were used. Values of ζ_{n} are given in the figure to the accuracy of the factor $\pi \Psi_{n}$, which is independent of θ in this example [3], $x_{1}=x \pi n / H, y=H / \pi n$. The solid curve corresponds to ζ_{n}, computed by means of (3); the dashes correspond to the first term in (23), containing the Fresnel integral; the dots correspond to the sum of the next two components, which are $O\left(R^{-1}\right)$; and the dash-dot corresponds to the whole principal term of the asymptotic ζ_{n}. The results of the computations performed show that the asymptotic obtained describes the contribution of the n-th mode in the wave field sufficiently well for $c=c_{n}$ even at a moderate distance from the wave generator. Taking account of terms of order $O\left(R^{-1}\right)$ improves the asymptotic estimate (23) substantially.

In conclusion we note that the integral for the η_{n} contribution of the n-th mode in the wave field formed by a point source [6] diverges for $c=c_{n}$. However, the displacement field $\eta(x, y, z)$, generated by a system of source-sinks of intensity Q at the points $\left(-a, 0,-H_{1}\right)$ and ($a, 0,-H_{1}$), is defined for $c=c_{n}$ and is related to $\zeta(x, y, z$) for a dipole by the formula $\eta(x, y, z)=Q M^{-1} \int_{-a}^{a} \xi(x+\xi, y, z) d \xi$. The asymptotic for the leading fronts of the waves in the
cases $c>c_{n}$ [4] and $c<c_{n}$ [6] is expressed in terms of the Airy functions in contrast to (23). Therefore, known asymptotics for the leading fronts are not uniform in for close to c_{n}.

LITERATURE CITED

1. I. V. Sturova and V. A. Sukharev, "Internal wave generation by local perturbations in fluid with a given change in density with depth," Izv. Akad. Nauk SSSR, Fiz. Atoms. Okeana, 17, No. 6 (1981).
2. V. F. Sannikov, "Influence of two pyonoclines on the steady internal waves in a stratified fluid flow," Surface and Internal Waves [in Russian], Sevastopol' (1981).
3. V. F. Sannikov, "Near field of steady waves generated by a local perturbation source in a stratified fluid flow, "Theoretical Investigations of Wave Processes in the Ocean [in Russian], Sevastopol' (1983).
4. V. A. Borovikov, Yu. V. Vladimirov, and M. Ya. Kel'bert, "Field of internal gravitational waves excited by localized sources," Izv. Akad. Nauk SSSR, Fiz. Atoms. Okeana, 20, No. 6 (1984).
5. E. P. Gray, R. W. Hart, and R. A. Farell, "The structure of the internal wave Mach front generated by a point source moving in a stratified fluid," Phys. Fluids, 26, No. 10 (1983).
6. V. F. Sannikov, "Steady internal waves generated by a local perturbation source in a stream," Modeling Surface and Internal Waves [in Russian], Sevastopol', (1984).
7. N. E. Kochin, I. A. Kibel', and N. V. Roze, Theoretical Hydromechanics [in Russian], Pt. I., GITTL, Moscow (1955).
8. M. V. Fedoryuk, Saddle Point Method [in Russian], Nauka, Moscow (1977).
9. G. E. Shilov, Mathematical Analysis. Second Special Course [in Russian], Nauka, Moscow (1965) .
