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The spatial problem of steady waves being generated during the flow around a dipole in 
a uniform inviscid, incompressible, stratified fluid flow of finite depth is considered in a 
linear formulation. Approximate semi-asymptotic solutions of analogous problems by numeri- 
cal methods are known [i, 2] for given fluid density distributions over the depth. An exact 
solution in the form of the sum of single integrals for waves from a source is obtained in 
[3]. Recently a uniform asymptotic has been determined for the leading front domain of a 
separate mode for the stream velocity c greater than the propagation velocity of the n-th 
mode long waves c n [4, 5]. This asymptotic is expressed for a fluid of finite depth in terms 
of Airy functions [4] and for an infinitely deep fluid by Fresnel integrals [5]. The 
method of constructing the complete asymptotic expansions of the solution [3] is described 
in [6] for c < c n. 

The asymptotic of the exact solution (in a linear formulation) of the problem under con- 
sideration is calculated in this paper for the critical stream velocity c = c n, including the 
uniform asymptotic for the leading front domain. 

Let the horizontal flow of an inviscid, incompressible fluid of depth H flow around a 
submerged point dipole oriented against the flow. The fluid density in the unperturbed state 
p0(z) depends on one vertical coordinate z and does not decrease with depth. In a linear 
formulation, the field of vertical fluid particle displacements C(x, y, z) generated by the 
dipole is described by the equation 

D2 o._~( o ) { d [po6(z+HD] } (1) Oz 9O-s ~ + 9o( Nz + D2)A2~ = Mc-~D2 8(x)f(y)~ 

with the boundary conditions 

) D~~z--gA~ ~=D (z=0),  ; = 0  ( z = - - H ) ,  (2) 

where D = c8/3x: A 2 = 8213x 2 + 82/3y2; x, y are horizontal coordinates; the fluid flows at 
the velocity c in the positive x direction; the dipole is at a point with the coordinates 
(0,0, -HI); N = = -gp~Idg0/dz is the square of the Brunt-Vaisala frequency, M is the magnitude 
of the dipole moment, g is the free fall acceleration, and 6(.) is the delta function. For 
an infinite homogeneous fluid [7] the dipole yields the p~ttern for the flow around a sphere 

of radius aJM/2~c. 

An exact solution of an analogous problem is Obtained in [i] for waves from a point 
source. It can be shown that the corresponding solution of (i) and (2) has the form 

= 2if (2,f-c) -~ 9o (-- HD ]~ ~ (x, g, z), 
rL=0  

= a e  (o; z, - H1} c [ - -  R :/2 cos (o - - v } ]  dO. 

Here R, y are polar coordinates of the horizontal (x, y) plane, x = R cos ~; y = R sin ~; 

d , f  ,, = W~(z ;  o ) ~  W~(-- H~;0); a~/2 vn is the arithmetic branch of the root; ~n and W n are eigen- 

values (B0 > 61 > ...) and normalized eigenfunctions 9oW~dz= 1 of the Sturm-Liouville 

(3) 

) problem ~ podW + Po(N2~--~)W=O ( - -H  ~ z < O ) ,  dzdW--g~'W=O (z--- 0), I/V = 0 (z = --H), 
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k = (c cos 0) - 2 .  The G(u) in (3) is the analytic continuation of the function ~p(u) = 

t ( F ' +  t ) - ~ e - ~ t d t ( I l e u > O )  i n  t h e  c o m p l e x  p l a n e  o f  t h e  v a r i a b l e  u w i t h  t h e  s l i t  ( - ~ ,  0 ] .  
o 
us  d e s c r i b e  t h e  p r o p e r t i e s  o f  t h e  f u n c t i o n  G(u)  b r i e f l y .  D e d u c e d  f r o m  t h e  d e f i n i t i o n  i s  

G(--u) = G(u) + isae r s = sign (arg u); 

Let 

(4) 

G (u) ~ - -  2 (--  1) TM (2m - -  1)! u -~m IIpII ] U I -+  OO, I arg u I < ~. 
t /~=l  

(5) 

d [G(tt) + Inul, where the principal branch of the logarithm is Let us use the notation F(u)=~ 
taken. The real parts of F(u) and the sum [G(u) + in u] vary continuously during passage 
through the slit and along the real u axis, Re F(0) = ~/2, Re[G(u) + In U]u= 0 = -C 0, and C o 
is the Euler constant. The functions G(u) and F(u) are also connected by the relationship 

_da F (u) = -- G (u). 
du 

The properties of the dispersion dependences Sn(1) are described in detail in [3]. It 
is essential for the purposes of this paper that ~n(1) grow monotonically for I ~ 0, tend 
to infinity for I § ~, where 

0 

d-7 = gP0W$ [z=o @ J 9oN-Wndz ' ( 6 )  
- -H 

and have one simple zero I = I n . The critical velocity c n for the n-th mode waves is related 
to in by the simple relationship c n = In -z/2. In the critical case c = c n under considera- 
tion in this paper, the function rn1(0) = Snl/2(c-icos-20) from (3) is even, positive for 

0 ~ 0 ,  a n d  1".1(0) = 0 ,  ~ - g r n l  __ 

L e t  u s  a n a l y z e  t h e  c o n t r i b u t i o n  o f  t h e  n - t h  mode t o  t h e  f a r  domain  o f  t h e  wave  f i e l d  
( a s  R§ ~ ,  Y1 5 7 ~ 7 ,  u i s  a s m a l l  p o s i t i v e  n u m b e r ) .  F i r s t  we make some r e m a r k s  
a b o u t  t h e  t e c h n i c a l  a s p e c t  o f  c a l c u l a t i n g ~ t h e  a s y m p t o t i c  e x p a n s i o n  o f  t h e  i n t e g r a l  ( 3 ) .  N o t e  
t h a t  f o r  c = c n t h e  a r g u m e n t  o f  t h e  f u n c t i o n  G ( ' )  i n  ( 3 )  t a k e s  on o n l y  r e a l  v a l u e s .  I t  f o l -  
l ows  from (4) and (5) that 

ReG(u)  N 8 n s i n u - -  ~ ( - -  t ) m ( 2 m - - l ) ] u - 2  ~, ( 7 )  

w h e r e  6 = 0 f o r  u > 0 and  5 = 1 f o r  u < 0 when Im u = 0 and  [u[ + ~ .  E x t r a c t i n g  t h e  n e i g h -  
b o r h o o d  o f  t h e  z e r o e s  o f  t h e  e x p r e s s i o n  5 n 1 ( 0 )  = r n l ( 8 ) c o s ( O  - ? ) ,  i n  c o n f o r m i t y  w i t h  ( 7 )  
we o b t a i n  a F o u r i e r  i n t e g r a l  and  power  s e r i e s  f o r  ( 3 )  f o r  t h e  r e m a i n i n g  p a r t  o f  t h e  i n t e r v a l  
of integration. The asymptotic of the Fourier integral is calculated by the stationary phase 
method [8]. The contributions of the zeros knl are found by integration by parts [6]. 

The functions An1(8) have for 0 < 7 < ~, Y r v/2 two simple roots 80 = 0 and 8, = ~ - 
~/2, since 

~ b . 1  (01) = r.~ (01) and ~0 A ~  (_+_+ O) = _ • (8 )  

I f  u = 0 o r  u = ~,  t h e n  5 n l  h a s  j u s t  one  z e r o  00 ( i t  i s  known t h a t  r n l  c o s  0 + c -1  max N ( z )  
a s  0 + v / 2 ,  n ~ 1 and  r01  c o s  O + ~ ) ,  w h i l e  i f  7 = ~ / 2 ,  t h e n  5 n l  h a s  one  m u l t i p l e  z e r o .  L e t  
u s  f i r s t  e x a m i n e  t h e  c a s e  when Anl h a s  two z e r o s  00 # 01.  We s e l e c t  n o n i n t e r s e c t i n g  n e i g h -  
b o r h o o d s  V 0 and  V 1 o f  t h e  p o i n t s  00 and  0 i ,  r e s p e c t i v e l y ,  and  we a r r a n g e  a p a r t i t i o n  o f  u n i t y  
[ s ]  

~10(0) @ n~(0) + N2(0) ------ 1. ( 9 )  

Here the functions nk(O) (k = 0,I) equal zero outside of V k, are infinitely differentiable, 
qk(Ok) = 1 and dmnk(Ok)/dOm = 0 for m ~ i, and the function n2(8) is defined by the identity 
(9). Now the expression (3) can be written in the form of the sum 

2 ~I~ 
C~ = ~" ~,~, ~,~ = Re ~ ~ . a G ( - - R A n l )  dO, ~ng = ~n~la- ( 1 0 )  

h~O --~2 
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Let us calculate the asymptotic as R + +~ for each of the components of (i0). Let us regu- 
larize the argument of the function G(') by using the notation rn(@) = sign(@)rnl(@ ) and 
A n = r n cos(@ --y). Using (4) we obtain 

~no = g Im ] ~e~R%d0 + Re .[ WnoG (-- RAn) dO. (11) 
~ro,O~O V 0 

Within an accuracy of 0(R-~), the first component in (ii) equals the contribution of the 
boundary point 8 = 0 [8] ; the asymptotic of the second component and of ~nl is found by inte- 
gration by parts [6]. Consequently 

~0 = B,~(B, "0 + Z~o(B, ~), ~ = Z~(R, ,:), (12) 

m=O O=o ~ 
.i, 

Znk(B,y) ,~ ~ (-- t)'~R -"rn j l n  I Antd Ò-~-d M2~-1 [~=h] i.A~,o j dO, M= ,t dO'd 
m=l  Vk An0 

The p r i n c i p a l  term of the asympto t ic  i s  ~n0 = -  -~  ~Fn(0; z , -  H J  + O(R-~-). The suppor t  of the  

f u n c t i o n  ~2(0) in the  remaining i n t e g r a l  ~n2 i s  a combinat ion of  t h r e e  i n t e r v a l s  in which 
[An~ [ i s  bounded un i fo rmly  from below. Using (4) and t a k i n g  account  of the  s igns  of An~ in 
these intervals' we find 

o ~ /2  ~ /2  

~n2 =r~Im J" ~F~oe~nd0 + a i m  S T~'oe*mX"d0 + Re .i ~Fn2G(RiA'~I)d0', 
O~ " 04 " - ~ / :  ( 13 ) 

O~ ~ rain (0o, O0 ~ 04 ~ max (0o, 00. 

The first integral in (13) differs from zero only for ~ < 4/2 and has at least one stationary 
point since A~8(8 ~) < 0 and 5~e(0) > 0. The formulas for the complete asymptotic expansion 
of the contributions of the simple, multiple, and almost stationary points are given in [8]. 
There are no other critical points for this component of (13). In every specific case in which the 
stationary points can be found, let us denote their total Contribution by Sn(R , X). The 
second component in (13) in the domain 0 < 7 ~ ~ under consideration has no critical points 
[i], consequently its contribution to the wave field is O(R-~). The asymptotic of the last 
component in (13) is derived from (5) and the theorem on integration of asymptotic series 
[8]. Consequently, as R § 4"~176 

~2 = Sn(B, y ) +  Dn(B, y), (14) 

D~ (B, ?) ,-~ -- ~ (-- I) TM B -2~ (2m-- t)i j' Tn2A~V~d0. 
m=l --~/2 

Thus, if 7 # ~/2 in the far wave field domain ~n to O(R -~) accuracy equals the sum of the 
contribution of the boundary point, the zeros A n (12), the stationary points, and the series 
Dn(R, y) (14). The sum of the series in even powers of R from (12) and (14) can be written 
in the form 

Zn0 (R, ~) + Znl  (R, ~) + Dn(B, ?) --, -- ~ (--t)~B-2~(2m--l)i .I ~nA~2~d0, 
m~l --~/2 

where A~ 2m should be considered as generalized functions [9]. 

As 7 § 7/2, merger of the zeros 80 and 81 of the argument of the function G in (3) occurs; 
consequently, the asymptotic expansions obtained are not uniform in X, 0 < 71 ~ 7 N 4. Let 

us calculate the asymptotic ~n in the neighborhood of the leading front, the plane x = 0(7 = 
7/2). Let m be a small positive number, 1811 < m, V 0 = (-2w, 2~) the neighborhood of the 
point 8 = 0, q0(8) an infinitely differentiable function equal to one for 18[ g m and zero 
outsideV0, while q2(8) = 1 - q0(8). In these notations ~n equals the sum 

~n = ~no + ~-  (15) 

Here (ii) is valid for 5n0, while (13) without the first component is valid for 5n:, and there- 
fore to O(R -~) accuracy 

~a~ = D~(B, y). (16) 
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The function 5n satisfies the conditions (6.1.20) [8] A'ne(0) = 0, 5~OO(0) = 2• ~07(0) = 
--x~ for 7 = ~/2, consequently [8] the equation 5~ = 0 has just one solution 92(7) for 7 suf- 
ficiently close to ~/2 and replacement of the variable 8 = u($, 7), is possible for which 

=(o, _2 
~= -- A~ (0) - -  A~,, A.~ = A~ (0~), ~ V ~ n 0 o  (o.,) 

and u ( ~ ,  ~)  i s  h o l o m o r p h i c  i n  t h e  n e i g h b o r h o o d  o f  t h e  p o i n t  ( 0 ,  ~ / 2 ) .  
permits conversion of (ii) to the form 

(17) 

The replacement (17) 

Go = ~. -F- rl~,,, (18) 

q.~ = n Im e i~a~2 q~nei~d~ , q ~  = Re ~ G  [-- B (g~ + A,~.,)] dg, 
- -  - - o o  

where B = sign -- ? ~ ~(~) = gn~1oug , and ~ is continued to zero outside the domain of 

definition of u(g, 7) in g. The complete asymptotic expansions of the integrals (18) as R 
are calculated by integration by parts by using a simple technical recipe. Let us demon- 

strate it in the expansion of the first of the integrals in (18): 

B B B 

--oo --oo --o~ 

B 

i ~- (~,~ (0) einr 4 (Pn (B) -- ~ (0) einB 2 __ _ 
2iBB 

B 

Continuation of this procedure yields the asymptotic expansion for the first component in 
(18)  

rln, ~ = l m  ( - - 2 i B ) - m  Pm(q~'0 ei '~"z eie~2d~ + ~ t o J ' / J  
m = 0  0 Jm 

The integral in (19) is expressed in terms of a special function, the Fresnel integral 

- - o o  - - o o  

As a result of the same integration by parts for ~,,2 

we obtain the series 

(19) 

qn~N ( _  1)~ (2R)_2~ p2m(q).)[o j * _ ~_~ p2m+l (qD.) l~ j- ~ _ _ _  P~-m+2 (%0 lnls,~(~)l d~ ; ( 2 0 )  
m=o 4Re --oo 

J1----Re GI--Rs~(D]dL J2----Re S F[--Rsn(g)]dg, sn(g)=g2+An2.  ( 2 1 )  
- - ~ o  - - o o  

The integrands in (21) are holomorphic in the domain 0 < arg $ < 7, and since it follows 
from (5) that {G(-Rsn{ = O([gl -4) and lF(-Rsn) [ = O([~I -2) as Igl ~ =, the integrals in (21) 
equal zero. Taking this into account, we rewrite(20): 

n,~2"--" ~ ( -  t)~(2R)-v~ ~p~'(%01nls,~(~)ld ~. (22) 
~q ,= l  - - ao  

Formulas (15), (16), (18), (19), and (22) yield the total asymptotic expansion for ~n in the 
neighborhood of the leading front. The principal term of the asymptotic gn as 7 + ~/2 has 
the form 

2BAboo 

0=o + ~  I �9 (BR'/") I ). 
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Fig. 1 

The representation of the closeness of the principal term of its asymptotic (23) to ~n 
is given in the figure. Computations were performed for a fluid with a constant Brunt- 
Vaisala frequency; the Boussinesq approximation and "solid cover" condition were used. Values 
of ~n are given in the figure to the accuracy of the factor ~n, which is independent of 8 
in this example [3], x I = x~n/H, y = H/~n. The solid curve corresponds to ~n, computed by 
means of (3); the dashes correspond to the first term in (23), containing the Fresnel integral; 
the dots correspond to the sum of the next two components, which are O(R-I); and the dash-dot 
corresponds to the whole principal term of the asymptotic ~n" The results of the computations 
performed show that the asymptotic obtained describes the contribution of the n-th mode in 
the wave field sufficiently well for c = c n even at a moderate distance from the wave genera- 
tor. Taking account of terms of order 0(R -I) improves the asymptotic estimate (23) substan- 
tially. 

In conclusion we note that the integra] for the qn contribution of the n-th mode in the 
wave field formed by a point source [6] diverges for c = c n. However, the displacement field 
n(x, y, z), generated by a system of source-sinks of intensity Q at the points (--a, 0, -H I) 
and (u, 0, -HI), is defined for c = c n and is related to ~(x, y, z) for a dipole by the formula 

~l(X,y,z) = QM -I S ~(x + ~,~,z)d~. The asymptotic for the leading fronts of the waves in the 
--5 

cases c > c n [4] and c < c n [6] is expressed in terms of the Airy functions in contrast to 
(23). Therefore, known asymptotics for the leading fronts are not uniform in c for c close 

to c n. 
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